
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51256 250

Optimization of Slot and Map Reduce Workload

Vinayak Kadam
1
, Rutuja Aughad

2
, Priyanka Gaikwad

3
, Jidnyasa khanore

4
, Pragati Naykodi

5

Professor, Computer Dept., JSPM, Pune, India
 1

Student, Computer Dept., JSPM, Pune, India
2, 3, 4, 5

Abstract: The increasing use of internet leads to handle lots of data by internet service providers. MapReduce is one of

the goodsolutions for implementing large scale distributed data application. AMapReduce workload generally contains

a set of jobs, each of which consists of multiple map tasks followed by multiple reducetasks. Due to 1) that map tasks

can only run in map slots and reduce tasks can only run in reduce slots, and 2) the general executionconstraints that

map tasks are executed before reduce tasks, different job execution orders and map/reduce slot configurations for a

MapReduce workload have significantly different performance and system utilization. Makespanand total completion

time are two key performancemetrics T his paper proposes two algorithm for these two key. Our first class of

algorithms focuses onthe job ordering optimization for a MapReduce workload under a given map/reduce slot

configuration. Our second class ofalgorithms considers the scenario that we can perform optimization for map/reduce

slot configuration for a MapReduce workload.

Keywords: MapReduce, Hadoop, Flow-shops, Scheduling algorithm, Job ordering.

INTRODUCTION

A MapReduce job consists of a set of map and reduce

tasks, where reduce tasksare performed after the map

tasks. Hadoop [2], an open source implementation of

MapReduce, has been deployed in largeclusters containing

thousands of machines by companies such as Amazon and

Facebook. Make span and total completion time are two

key performance metrics. Generally, make span is defined

as the timeperiod since the start of the first job until the

completion ofthe last job for a set of jobs. It considers the

computationtime of jobs and is often used to measure the

performance andutilization efficiency of a system. In

contrast, total completiontime is referred to as the sum of

completed time periods for alljobs since the start of the

first job. It is a generalized make span with queuing time

(i.e., waiting time) included. We can use itto measure the

satisfaction to the system from a single job’sperspective

through dividing the total completion time by thenumber

of jobs (i.e., average completion time). Therefore, inthis

paper, we aim to optimize these two metrics

Objectives:-

 To improve the performance for MapReduce

workloads with job ordering and slot configuration

optimization approaches.

 Propose slot configuration algorithms for make span

and total completion time.

 Perform extensive experiments to validate the

effectiveness of proposed algorithms and theoretical

results.

EXISTING SYSTEM

Scheduling: Given the distributed nature of most data

analytics systems, scheduling thequery execution plan

makes it an important part of the system. Systems must

now take severalscheduling decisions, including

scheduling where to run each computation, scheduling

inter-nodedata transfers, as well as scheduling rolling

updates and maintenance tasks.Many researchers have

worked on optimization work for MapReduce jobs, and

paid attention on computation scheduling and resource

allocation topics of the same. Also many authors

considered job ordering optimization for MapReduce

workloads. The modelingof the MapReduce as a two-stage

hybrid flow is described in. This hybrid flow shop has

multiprocessor tasks, where job submission orders affect

the results of cluster utilization and system performance.

The execution time formapping and reducing the tasks for

each job must be known earlier, but this phenomenon is

not implemented in the applications. Also this method has

not considered for the dependent jobs and suitable only for

the independent jobs. Example of such method is

MapReduce workflow.

Fig: Existing system

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51256 251

RELATED WORK

MapReduce [1] is a programming model and an associated

implementation for processing and generating large

datasets. Users specify amap function that Processes a key/

value pair to generate a set of intermediate key/ value

pairs, and are duce function that merges all Intermediate

values associated with the same intermediate key.

The Apache Hadoop [2] software library is a framework

that allows for the distributed processing of large data sets

across clusters of computers using simple programming

models. It is designed to scale up from single servers to

thousands of machines, each offering local computation

and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and

handle failures at the application layer, so delivering a

highly-available service on top of a cluster of computers,

each of which may be prone to failures. The problem of

map-reduceScheduling [3] by abstracting the above

requirements and desiderata inscheduling terms. In

particular, we focus on multiple-task multiple-machine

two-stage non-migratory scheduling with precedence

constraints; these constraints exist between each map task

and reducetask for a job.We consider a subset of

[4]production workload that consists of MapReduce jobs

with nodependencies. We observe that the order in which

these jobsare executed can have a significant impact on

their overallcompletion time and the cluster resource

utilization. Our goalis to automate the design of a job

schedule that minimizes thecompletion time (makespan)

of such a set of MapReduce jobs. We consider the impact

of thearchitectural design of MapReduce,[5] including

programming model, storage-independent design and

scheduling. In particular, we identify have factors that

affect the performanceof MapReduce: I/O mode, indexing,

data parsing, groupingschemes and block-level scheduling.

Performance optimization for MapReduce jobs is a very

attention captivating topic for researchers. We survey

some of the relating topic to our proposed work.

ALGORITHM

1. Scheduling and Resource Allocation Optimization :-

Compared to this phenomenon, our proposed method is

suitable for all types of jobs. Starfish [6] framework can

modify the hadoopconfiguration automatically for the

MapReduce jobs. By using sampling technique and cost

based model we can maximize the utilization of hadoop

cluster. But still we can improve the performance of this

technique by maximizing the utilization of map and by

reducing slots.[11] proposed a technique for MapReduce

multi job workloads based on resource aware scheduling

technique. This technique focus on improving resource

utilization by expanding the abstraction of existing task

slot to job solve the inefficiency problem of the Hadoop

MRv1 in the perspective of resource management. Instead

of using slot, it manages resources into containers. The

Map and Reduce operation are performed on any

container.

2. Speculative Execution Optimization :-

In MapReduce we need task scheduling strategy for

dealing with problems such as straggler problem for a

single job, which include [8], Speculative execution is

such an important task scheduling strategy. The

speculative execution algorithm speculates the task by

prioritizing and pays attention on heterogeneous

environments. To run, selecting the fast nodes and the

speculative tasks are covered over, this speculative

execution algorithm is a longest approximate time to end

(LATE) [13], and the prioritizing of task is required for

speculation. Guo et al. [9] proposes a Benefit Aware

Speculative Execution (BASE) algorithm which evaluate

the potential benefit of the speculative tasks and the

unnecessary runs are eliminated. This BASE algorithm of

the evaluating and elimination can improve the

performance for LATE. The speculative execution strategy

magnifies its focus mainly on saving cluster computing

resource. Maximum Cost Performance (MCP) is a new

speculative execution algorithm proposed by the proposed

for fixing the problem that was affecting the performance

of the prior speculative execution strategies. We proposed

speculative Execution Optimization strategy that balances

the tradeoffs between a single job and a group of jobs.

3. Slot Pre-Scheduling:-

It improves the slot utilization efficiency and performance

by improving the data locality for map tasks while keeping

the fairness.

Step 1: Compute load factor mapSlotsLoadFactor =

Pending map tasks +running map tasksfrom all jobs

divided by the cluster map slot capacity.

Step 2: Compute current maximum number of usable map

Slots = number ofmap slots in a tasktracker*

minmapSlotsLoadFactor, 1.

Step 3: Compute current allowable idle map (or reduce)

slots

For a tasktracker= maximum number of usable map slots -

current number ofused map (or reduce) slots.

PROPOSED SYSTEM

A. Problem Definition

To maximize the slot utilization for MapReduceand

balancethe performance tradeoff between a single job and

a batch of jobs with fair scheduling and improving the

performance of MapReduce cluster in Hadoop.

B. Goals and Objective

The objective is to utilize the slots in MapReduce cluster.

The slot utilization remains a challenging task due to

fairness and resource requirements. It is fair when all

pools have been allocated with the same amount of

resources. The resources requirements between themap

slot and reduce slot are generally different.This isbecause

the map task and reduce task are often exhibit completely

different execution patterns.

We review job ordering optimization. To model

performance of system, makespan and total completion

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51256 252

time is used. Total time taken to complete job is

calculated.We describethe dynamic slot allocation

frameworkthat produces the optimized job orderand also

prove its approximation ratio. We also describethe job

order which gives the worst, i.e., longest makespan,which

is used for derivation of the upper bound makespanof a

workload.We propose an alternative technique called

dynamic hadoop slot allocation by keeping the slot based

model. It relaxes the slot allocation constraint to allow

slots to be reallocated to either map or reduce tasks

depending on their needs. Second, the speculative

execution can tackle the straggler problem, which is

shown to improve the performance for single job but at the

expense of the clustering. In the view, we propose

speculative execution performance balancing to balance

performance trade-off between single job and a batch of

jobs. Third, delay scheduling has shown to improve the

data locality but at the cost of fairness. Finally, by

combining these techniques together, we form step by step

slot allocation system called Dynamic MR that can

improve performance of map reduce workloads

substantially.

Software requirement:-

Operating System : Windows 10

Technology : Java, J2EE

Web Technologies : Html, JavaScript, CSS

 IDE : My Eclipse

 Web Server : Tomcat

 Database : My SQL

 Java Version : J2SDK 1.7 / 1.8

Hardware requirement:-

Hardware - Pentium

Speed- 1.1 GHz

RAM - 1GB

Hard Disk - 20 GB

Floppy Drive - 1.44 MB

Key Board - Standard Windows Keyboard

Mouse - Two or Three Button Mouse

Computer - 3 Pc

CONCLUSION

Dynamic slot configuration is one of the important

factorswhile processing a large data set with MapReduce

paradigm. It optimizes the performance of

MapReduceframework. Each job can be scheduled using

any one of the scheduling policiesby the job tracker.The

task managerswhich are presentin the task tracker

allocateslots to jobs.From the examined paper,it is

concluded to prefer a dynamic slot allocation strategy that

includes active jobs workload estimation, optimal slot

assignment, and scheduling policy.

REFERENCES

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters, In Proceedings of the 6th Symposiumon
OperatingSystemsDesign and Implementation (OSDI), 2004.

[2] Hadoop. http://hadoop.apache.org.

[3] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On scheduling in
map-reduce and flow-shops. SPAA, pp. 289-298, 2011.

[4] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a Coin:

Optimizing the Schedule of MapReduce Jobs to Minimize Their
Makespan and Improve Cluster Performance. MASCOTS 2012.

[5] J. Dittrich, J.-A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J.

Schad.Hadoop++: Making a Yellow Elephant Run Like a Cheetah,
PVLDB,3(1), 2010.

[6] D.W. Jiang, B.C. Ooi, L. Shi, and S. Wu.The Performance of

MapReduce:AnIndepth Study, PVLDB, 3:472-483, 2010.

[7] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On scheduling in

map-reduce and flow-shops. In SPAA’11, pp. 289-298, 2011.

[8] A. Verma, L. Cherkasova, R.H. Campbell, Orchestrating an
Ensemble of MapReduce Jobs for Minimizing Their Makespan,

IEEE Transaction on dependency and secure computing, 2013.

[9] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a Coin:
Optimizing the Schedule of MapReduce Jobs to Minimize Their

Makespan and Improve Cluster Performance. In IEEE MASCOTS,

pp. 11-18, 2012.
[10] S.J. Tang, B.S. Lee, and B.S. He. MROrder: Flexible Job Ordering

Optimization for Online MapReduce Workloads. In Euro- Par’13,

pp. 291 -304, 2013.
[11] S.J. Tang, B.S. Lee, R. Fan and B.S. He. Dynamic Job Ordering

and Slot Configurations for MapReduce Workloads, CORR

(Technical Report), 2013.

